Question Number	Acceptable Answers	Reject	Mark
1 (a)(i)	$Cr_2(SO_4)_3(aq) = Cr(H_2O)_6^{3+}$ ALLOW $Cr^{3+}(aq) / Cr^{3+}$ (1)		4
	$A = Cr(H_2O)_3(OH)_3 / Cr(OH)_3 $ (1)		
	$B = Cr(H_2O)_2(OH)_4^- / Cr(OH)_4^- / Cr(OH)_6^{3-}$ (1)		
	$C = CrO_4^{2-} $ (1)		
	IGNORE SO ₄ ²⁻ and/or Na+		

Question Number	Acceptable Answers	Reject	Mark
1(a)(ii)	$H_2O_2 + 2e^{(-)} \rightarrow 2OH^-$		1

Question Number	Acceptable Answers	Reject	Mark
1(a)(iii)	Sulfuric acid / H ₂ SO ₄ ALLOW Name or formula of any strong acid (e.g. HCI) IGNORE H ⁺ and 'an acid' Dilute or concentrated		1

Question Number	Acceptable Answers	Reject	Mark
1(a)(iv)	$2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$ ALLOW Equation showing Na ⁺ and anion on both sides IGNORE State symbols even if incorrect	Non-ionic equations	1

Question Number	Acceptable Answers	Reject	Mark
1(b)	First mark for both half equations Mentions / some evidence for the use of BOTH half equations in any way even if reversed or left unbalanced		4
	$Cr^{3+}(aq) + e^{-} \rightarrow Cr^{2+}(aq) (E^{e} = -0.41 \text{ V})$		
	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^-$ $\rightarrow 2Cr^{3+}(aq) + 7H_2O(I) (E^6 = +1.33 \text{ V})$ (1)		
	Second mark for $8Cr^{3+}(aq) + 7H_2O(I) \rightarrow 6Cr^{2+}(aq) + Cr_2O_7^{2-}(aq) + 14H^+(aq)$ (1)		
	Third mark for $E^{\circ}_{cell} = -0.41 - 1.33 = -1.74$ (V)		
	For second and third marks , ALLOW reverse equation and $E^{\Theta}_{cell} = +1.74$ (V) (for reverse reaction) (1)		
	ALLOW 1.74 (V) only if 'positive' stated in words elsewhere		
	Fourth mark for		
	EITHER		
	Disproportionation / (proposed) reaction / "it is" not feasible (because its E^{e}_{cell} is negative)		
	OR		
	Reverse of disproportionation is feasible (because its E^{e}_{cell} is positive) (1)		
	IGNORE state symbols even if incorrect		
	ALLOW \Rightarrow instead of \rightarrow		
	Third and fourth marks can be awarded CQ on incorrect half equation(s) and stated E^{\bullet} values		

Question Number	Acceptable Answers		Reject	Mark
2 (a)		(1) (1)	Formulae with incomplete or unbalanced charges	6
	ALLOW Cu(NH ₃) $_{6}^{2+}$ / hexaamminecopper(II)	(1)	Incorrect oxidation	
	<pre>D = copper / Cu / copper(0) / Cu(0) E = copper(II) sulfate / CuSO₄ / Cu²⁺ /</pre>	(1)	states even with correct	
	$Cu(H_2O)_6^{2+}$ F = diamminecopper(I) / Cu(NH_3)_2^+	(1) (1)	formulae	
	ALLOW coordination numbers 1-6 in F Oxidation number separate from name			
	IGNORE state symbols even if incorrect names without oxidation numbers except for	r D		

Question Number	Acceptable Answers	Reject	Mark
2 (b)	(Dilute) sulfuric acid / H ₂ SO ₄ / H ₂ SO ₄ (aq) ALLOW concentrated		1

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	(transition metal / d-block element) complex(es) /complex ion(s) IGNORE ammines	Complex molecules amines, ions, ligands	1

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	Copper ion in C has partially filled d orbital(s) / subshell / 3d ⁹	d orbitals empty	3
	ALLOW		
	unpaired d electron		
	d shell (1)		
	Copper ion in F has (completely) filled d orbitals / subshell / 3d ¹⁰ (1)	no unpaired electrons (in F) orbital	
	Reference to complete / incomplete d orbitals max 1	(singular)	
	EITHER Electronic transitions between partially filled (d) orbitals (of different energy) are possible OR Electronic transitions between (completely) filled (d) rbitals (of different energy) are not possible (1)	Splitting impossible because d orbitals full	
	ALLOW		
	Equivalent words for transition e.g. promotion / jump / movement		
	Penalise use of just 'shell' once IGNORE references to electrons returning to lower energy levels and emission of light		

Question Number	Acceptable Answers	Reject	Mark
2 (c)(iii)	Copper(I) is oxidized (to copper(II))ALLOW F / it is oxidized(1)By oxygen / air(1)Second mark depends on firstIGNORE'shaking'(1)		2

Question Number	Acceptable Answers		Reject	Mark
2 (d) (i)	(simultaneous) oxidation and reduction OR Simultaneous increase or decrease in oxida number of an element ALLOW 'Species' 'atoms of the same type' for 'eler Explanation in terms of copper(I) IGNORE Atom / ion / compound / substance / react	(1) ment'	molecule	2

Question Number	Acceptable Answers	Reject	Mark
2 (d)(ii)	$2Cu^{+} \rightarrow Cu + Cu^{2+}$ OR $2CuI + 2H^{+} \rightarrow Cu + Cu^{2+} + 2HI$ OR $2CuI \rightarrow Cu + Cu^{2+} + 2I^{-}$ IGNORE state symbols even if incorrect	Non-ionic equations	1

Question Number	Acceptable Answers	Reject	Mark
2 (d) (iii)	ALLOW The use of cell notation (as in the Data Booklet SEP table) in place of equations e.g. Cu ⁺ (aq) Cu(s) $E^{e} = +0.52$ (V) (from the data book the equations are) Cu ⁺ (aq) + e ⁻ \rightarrow Cu(s) $E^{e} = +0.52$ (V) Cu ²⁺ (aq) + e ⁻ \rightarrow Cu ⁺ (aq) $E^{e} = +0.15$ (V) (1) So $E^{e}_{cell} = 0.52 - 0.15 = +0.37$ (V) (1) Correct answer including sign with no working scores full marks TE for second mark for use of Cu ²⁺ ICu +0.34 (V) which gives +0.19(V)/+0.18(V) No TE on incorrect equation in (d)(ii)	Answer without + sign	2

Acceptable Answers	Reject	Mark
ALLOW In both schemes the use of cell notation (as in the Data Booklet SEP table) in place of equations e.g. $Cu^{2+}(aq) Cu(s) E^{e} = +0.34$ (V) Penalise omission of electrons from equations and vertical lines from cell diagrams and reversal of equation without reversing sign. once only IGNORE omission of + sign for all E^{e} values Scheme 1 (oxidation of copper) Copper (formed (by disproportionation)) is oxidized (by nitric acid) must be stated in words stand alone mark (1) Relevant half equations are $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) E^{e} = +0.34$ (V) (1) $2NO_{3}^{-}(aq) + 4H^{+}(aq) + 2e^{-} \rightarrow N_{2}O_{4}(g) + 2H_{2}O(l)$ $E^{e} = +0.80$ (V) OR $NO_{3}^{-}(aq) + 3H^{+}(aq) + 2e^{-} \rightarrow HNO_{2}(aq) + H_{2}O(l)$ $E^{e} = +0.94$ (V) (1) Correct overall equation scores both marks:	Reject	Mark 4
OR Cu + NO ₃ ⁻ + 3H ⁺ → Cu ²⁺ + HNO ₂ + H ₂ O So E^{9}_{cell} is +0.46 (V) (or +0.60 (V) or just 'positive') (1) Scheme 2 (oxidation of copper(I) Copper(I) iodide / Cu ⁺ is oxidized (by nitric acid) must be stated in words (1) stand alone mark Cu ²⁺ (aq) + e ⁻ → Cu ⁺ (aq) E^{9} = +0.15 (V) (1) 2NO ₃ ⁻ (aq) + 4H ⁺ (aq) + 2e ⁻ → N ₂ O ₄ (g) + 2H ₂ O(I) E^{9} = +0.80 (V) OR NO ₃ ⁻ (aq) + 3H ⁺ (aq) + 2e ⁻ → HNO ₂ (aq) + H ₂ O(I) E^{9} = +0.94 (V) (1)		
	ALLOW In both schemes the use of cell notation (as in the Data Booklet SEP table) in place of equations e.g. $Cu^{2+}(aq) Cu(s) = E^{\sigma} = +0.34$ (V) Penalise omission of electrons from equations and vertical lines from cell diagrams and reversal of equation without reversing sign. once only IGNORE omission of + sign for all E^{σ} values Scheme 1 (oxidation of copper) Copper (formed (by disproportionation)) is oxidized (by nitric acid) must be stated in words stand alone mark (1) Relevant half equations are $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) = E^{\sigma} = +0.34$ (V) (1) $2NO_{3}^{-}(aq) + 4H^{+}(aq) + 2e^{-} \rightarrow N_{2}O_{4}(g) + 2H_{2}O(l)$ $E^{\sigma} = +0.80$ (V) OR $NO_{3}^{-}(aq) + 3H^{+}(aq) + 2e^{-} \rightarrow HNO_{2}(aq) + H_{2}O(l)$ $E^{\sigma} = +0.94$ (V) (1) Correct overall equation scores both marks: $Cu + 2 NO_{3}^{-} + 4H^{+} \rightarrow Cu^{2+} + N_{2}O_{4} + 2H_{2}O$ OR $Cu + NO_{3}^{-} + 3H^{+} \rightarrow Cu^{2+} + HNO_{2} + H_{2}O$ $So E^{\sigma}_{ cell}$ is +0.46 (V) (or +0.60 (V) or just 'positive') (1) Scheme 2 (oxidation of copper(I) Copper(I) iodide / Cu^{+} is oxidized (by nitric acid) must be stated in words (1) stand alone mark $Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq) E^{\sigma} = +0.15$ (V) (1) $2NO_{3}^{-}(aq) + 4H^{+}(aq) + 2e^{-} \rightarrow N_{2}O_{4}(g) + 2H_{2}O(l)$ $E^{\sigma} = +0.80$ (V) OR $NO_{3}^{-}(aq) + 3H^{+}(aq) + 2e^{-} \rightarrow N_{2}O_{4}(g) + 2H_{2}O(l)$	ALLOW ALLOW In both schemes the use of cell notation (as in the Data Booklet SEP table) in place of equations e.g. $Cu^{2+}(aq) Cu(s) = E^{\sigma} = +0.34 (V)$ Penalise omission of electrons from equations and vertical lines from cell diagrams and reversal of equation without reversing sign. once only IGNORE omission of + sign for all E^{θ} values Scheme 1 (oxidation of copper) Copper (formed (by disproportionation)) is oxidized (by nitric acid) must be stated in words stand alone mark (1) Relevant half equations are $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) = E^{\theta} = +0.34 (V)$ (1) $2NO_{3}^{-}(aq) + 4H^{+}(aq) + 2e^{-} \rightarrow N_{2}O_{4}(g) + 2H_{2}O(1)$ $E^{\theta} = +0.80 (V)$ OR $NO_{3}^{-}(aq) + 3H^{+}(aq) + 2e^{-} \rightarrow HNO_{2}(aq) + H_{2}O(1)$ $E^{\pi} = +0.94 (V)$ (1) Correct overall equation scores both marks: $Cu + 2 NO_{3}^{-} + 4H^{+} \rightarrow Cu^{2+} + N_{2}O_{4} + 2H_{2}O$ OR $Cu + NO_{3}^{-} + 3H^{+} \rightarrow Cu^{2+} + HNO_{2} + H_{2}O$ So E^{θ} cell is $+0.46$ (V) (or $+0.60$ (V) or just 'positive') (1) Scheme 2 (oxidation of copper(1) $Copper(1)$ iodide / Cu^{+} is oxidized (by nitric acid) must be stated in words (1) stand alone mark $Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq) E^{\theta} = +0.15 (V)$ (1) $2NO_{3}^{-}(aq) + 4H^{+}(aq) + 2e^{-} \rightarrow N_{2}O_{4}(g) + 2H_{2}O(1)$ $E^{\theta} = +0.80 (V)$ OR $NO_{3}^{-}(aq) + 3H^{+}(aq) + 2e^{-} \rightarrow HNO_{2}(aq) + H_{2}O(1)$ $E^{\theta} = +0.80 (V)$ OR

$2Cu^{+} + 2NO_{3}^{-} + 4H^{+} \rightarrow 2Cu^{2+} + N_{2}O_{4} + 2H_{2}O$ $2Cu^{+} + NO_{3}^{-} + 3H^{+} \rightarrow 2Cu^{2+} + HNO_{2} + H_{2}O$	
So <i>E</i> ^e _{cell} is +0.65 (V) (or +0.79 (V) or just 'positive') (1)	
IGNORE (omission of) state symbols even if incorrect	

Question Number	Acceptable Answers	Reject	Mark
3 (a) (i)	(Ligands cause) d orbitals / sub-shell / sub level to split (1)	Description of flame test	3
	Some frequencies of light (energy) are absorbed (1)		
	To promote electrons (within d level / d \rightarrow d transitions) (1)		
	ALLOW as alternative for second mark		
	Remaining light is transmitted / reflected (resulting in the colour seen)		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
3 (a) (ii)	Concentrated HCl / HCl / HCl (aq) (1)	Dilute HCl	2
	Ligand exchange / replacement / substitution (1)		
	Mark independently		

Question Number	Acceptable Answers	Reject	Mark
3 (b) (i)	$\begin{split} & [Cr(H_2O)_6]^{3^+} + H_2O \Rightarrow [Cr(H_2O)_5(OH)]^{2^+} + H_3O^+ \\ & (1) & (1) \\ & \text{ALLOW} \\ & [Cr(H_2O)_6]^{3^+} + H_2O \Rightarrow [Cr(H_2O)_5(OH)]^{2^+} + H_2O + H^+ \\ & (1) & (1) \\ & \text{ALLOW second mark for number of } H_3O^+ \text{ ions} \\ & \text{related to incorrect complex e.g.} \\ & [Cr(H_2O)_4(OH)_2]^{2^+} + 2H_3O^+ \text{ scores second mark} \\ & \text{Ignore state symbols even if wrong} \end{split}$		2

Question Number	Acceptable Answers	Reject	Mark
3 (b) (ii)	The concentration of oxonium / hydrogen ions is less in the $[Cu(H_2O)_6]^{2^+}$ / fewer hydrogen ions produced or reverse argument based on Cr ion (1) ALLOW $[Cr(H_2O)_6]^{3^+}$ / chromium ion deprotonates more easily if H_3O^+ shown in equation in (b) (i) Because copper ion is 2+ whilst the chromium ion	Just chromium complex more acidic The concentration of oxonium / hydrogen ions is greater in the $[Cu(H_2O)_6]^{2+}$ / more hydrogen ions produced Ligand exchange	2
	is 3+ / charge on copper ion is less than charge on Cr ion / less charge density on 2+ ions / Cr (3+) draws more electron density from the O-H bond (1)	Ligano exchange	

Question Number	Acceptable Answers	Reject	Mark
3 (c)	$Cr(OH)_3 / Cr(H_2O)_3(OH)_3$		1

Question Number	Acceptable Answers	Reject	Mark
3 (d)	NaOH is a (strong) base / alkali (1) Cr(H ₂ O) ₃ (OH) ₃ loses (three) protons / undergoes further deprotonation OR	Chromium is amphoteric	3
	Cr(OH) ₃ is amphoteric (so reacts with strong bases) (1) To reverse reaction 4 add (sulfuric) acid / H ⁺ / HCl (1)		

Question Number	Acceptable Answers	Reject	Mark
3 (e)	$\begin{array}{l} \left[{\rm Cr}({\rm NH}_3)_6 \right]^{3+} + \left({\rm edta} \right)^{4-} \rightarrow \left[{\rm Cr}({\rm edta}) \right]^- + 6 {\rm NH}_3 \mbox{(1)} \\ \mbox{Ignore missing brackets} \\ \mbox{Ignore state symbols even if wrong} \\ \\ \mbox{During the reaction number of particles increases} \\ \mbox{(2 to 7) / more moles of product than reactants} \\ \\ \mbox{AND entropy (of system) increases} \mbox{(1)} \end{array}$	Entropy increases because a gas is produced only Just more products than reactants	2